阅读历史 |

第284章 围巾(1 / 2)

加入书签

weaviate是一个向量搜索引擎数据库,它专注于连接和管理分散的数据,并通过语义链接来

解析和查询这些数据。它的主要功能包括语义搜索、数据链接和知识图谱构建。weaviate的关键

特性包括机器学习集成,支持多种相似度度量,如欧氏距离和余弦相似度,以及可扩展性。

weaviate的主要用途是帮助开发者构建智能应用程序,利用其强大的语义搜索和数据关联功能

从而实现更智能、更个性化的数据检索和推荐。其特点包括开源、高度可扩展、语义搜索功能强

大、支持多种数据类型和格式等。这使得weaviate在处理大规模复杂数据集时表现出色,特别适

用于智能问答、搜索引擎和图像识别等领域。

本章介绍了向量知识库在信息检索和数据管理中的具体优势,随后介绍了向量知识库的构建,

是提取分割文本,嵌入向量,随后构成向量知识库。给出了ebeddg的原理以及给出了使用

ebeddgApI将数据变成向量的代码示意,经过向量化的数据,将其存入pipee,后将数据

库与weaviate相连,完成语义搜索、数据链接和知识图谱构建

术是一种结合了检索和生成机制的深度学习框

架,用于增强语言模型的性能,尤其适合于构建特定领域的专业大模型。这一技术通过从大规模知

识库检索相关信息,然后将这些信息融入生成过程中,来生成更准确、更丰富的响应。本节将详细

阐述如何使用RAG技术基于通用大模型搭建电力生命周期评估(LcA)领域的专业大模型。

RAG技术核心在于将传统的语言生成模型与信息检索系统结合起来。这种结合不仅使模型能够

生成语言,还能从大量的文档中检索到具体的事实和数据,从而提供更加精确和详细的生成内容。

RAG的工作流程大致可以分为以下几步:

查询生成:根据输入,如一个问题或提示,生成一个查询。

文档检索:使用生成的查询在知识库中检索相关文档或信息。

内容融合:将检索到的信息与原始查询融合,形成新的、丰富的输入。

答案生成:基于融合后的输入,使用语言生成模型生成最终的文本输出。

先前已经构建好了针对电力LcA领域的专业大模型,但是缺少检验模型的手段,即缺少模型优

化环节,本项目设置通过chatbot模式,通过与用户进行问答的形式,检验模型是否能调用电力行

业LcA领域向量数据库回答该领域专业性问题和时效性问题的有效性。

chatbot模式的测试不仅可以验证模型的知识覆盖范围和答案的准确性,还可以评估模型的用

户交互能力。这种测试模拟真实用户与模型的交互,可以揭示模型在理解和生成回应方面的潜在问

↑返回顶部↑

书页/目录

其他类型相关阅读: 高冷军少之独占爱妻 龙魂传 轮回印 血脉剑神 国运之战:我以神明镇诸天 生命最后三年,高冷总裁妻子疯狂报复我! 厨神,妖兽:不好,我们成食材了 掐指一算,你是逃犯! 女帝痛哭,她杀死了自己最爱的人 我在天牢,长生不死 大唐:开局碰瓷长乐公主 金戈丽人行:天命之魁 村滥 重生88,从大山挖参开始! 龙珠:守护绝望未来 御兽,从银月天狼开始 错嫁:鬼眼王妃 大唐十万里 游戏入侵:我的血能毒杀异界神魔 天才与废材 神奇宝贝:系统开局 符道之祖 变成龙的我,今天该干什么 木叶骑士王 HP:失色魂灵 重回七零,与病娇老公举案齐眉 砍树爆装备?我爆的全是修仙法宝 重生:校花不甜,我为什么要舔? 妹妹别怕,哥哥超护短 借我一缕阳光 放肆,沉沦 族咒:山隐卷 我和柯南,才不是你想的那样! 凤舞九天【传奇商后妇好】 羽化飞仙 世界崩坏:炎龙侠还在追我! 我有一剑,可斩灭天地万物! 官术:拯救女市长后,我步步高升 卧底,再不收网我就恶贯满盈啦! 超脱之路:掠夺万界资源 跳龙门 喝醉后被白梦妍捡回家 悟性逆天,我在诸天薅羊毛 在下潘凤,字无双 我靠采集在御兽世界里刷祝福 称帝了,才告诉我父母是禁忌级? 武道贫困生!从杀猪开始横推星空 刚下山就被女神骗去同居了 序列为零 当官哪有种地香 相亲失败后,富婆试图走进我心房 我,刚失恋,穿进盗笔了 生下来就死,阎王见了我都跪 离石游记 离婚后躺女总裁床上,前妻急了? 全院轮转,皮科大夫请求出战 科技搬运工 快穿:宿主是咸鱼还是炮灰 重生了,谁还谈个狗屁恋爱! 姝神录