阅读历史 |

第82章 卡住的思路(1 / 2)

加入书签

突如其来的灵感让徐川一口闷掉了手里的感冒药,杯中温热原本微微有些泛苦的药水此刻变得甘甜无比,仿佛一杯蜂蜜水一样,沁人心脾。

手中的杯子放下,他从抽屉中摸出一叠纸笔,平铺在桌面上演算起来。

weyl-berry猜想的弱化形式他已经搞定在了,但并不代表weyl-berry猜想的证明难度就变简单了。

这就像是的弱哥德巴赫猜想在13年的五月份就被两名数学家搞定了,但时至今天已经是15年的十一月份了,时间已经过去了整整两年多,可哥德巴赫猜想被完整的证明依旧遥遥无期一样。

徐川也并不觉得自己能在证明weyl-berry猜想的弱化形式后短时间内能搞定weyl-berry猜想。

哪怕有上辈子的一些数学知识打底,哪怕他已经搞定了弱weyl-berry猜想,但他也不觉得自己能在一两年的时间内就解决掉完整的weyl-berry猜想。

可数学这东西,有时候是真的依赖灵感。

灵感不够的时候,就像是写小说断更一样,便秘一个月都更不出来一章。

灵感来了,在基础知识足够扎实的时候,你很快就能解决掉一个又一个的问题。

手中的黑色签字笔在洁白的a4纸上不断的勾勒出一个个的字符。

“.从weyl定理3.2出发,构造一个有界且连通的开集Ω,设Ω为满足以上条件(c)的r(n≥2)中有界连通区域,其边界具有内kowski维数δ∈(n-1,n),则有λ→+∞,且有:

n(λ)-(λ)≤-,δ(λ/π)δ/2pn(t+o(1))+o(δλ/π)

这里的pn(t)是3.2项定理的函数表达式。

证明:若在开方块qkξ的各个边的切口(或洞)处加neuan边界条件,而其他地方仍保持优dirichlet边界条件,这时对应的计数函数记为n(λ,qkξ)。

于是我们有:n(λ)-(λ)≤∑∞/k=0#

在灵感得来初期,徐川下笔如有神助一般,很快就将weyl-berry猜想的分形维数和分形测度的谱不变量定义到了一个高纬边界上。

然后

然后他就不负众望的卡住了。

高斯的《算术研究》原本教会了他通过域的扩张来对分圆方程的辅助方程求分解,也让他想到了利用狄利克雷函数域来转换拉普拉斯算子和拉普拉斯双曲型方程。

但是,他没怎么深入的学习过域的扩张以及如何将函数转换成子群并与中间域和合集建立起来联系,上辈子没有学习这块的知识,这辈子上大学还不到一学期,还没来得及学这些。

所以现在他是空有思路,脑海中的基础数学却撑不起来这条思路的验算。

盯着写满了算式的稿纸看了半天,最终徐川还是将手中的签字笔丢到了桌上,身体往后一靠,盯着有些灰白的房顶发呆。

这种有解题思路,但基础能力却无法完成验算的情况,大概也就会出现在他这种怪胎身上了吧。

毕竟正常来说,基础能力不够的话,根本就提不出什么解题思路。

但他不同,上辈子在普林斯顿的学习虽然主要集中在物理方面,可普林斯顿终究是数学胜地。

日月积累下来终究会接触到不少的数学,只是说这些数学知识都只是皮毛,没有深入精髓。

这也导致了上辈子和这辈子他都遇到了同样的问题,就是在针对某些数学问题进行研究的时候,能依赖极为广泛的见识提出一些想法和见解或者解题思路,但是脑海中却没对应的基础知识,进而无法做到完善。

↑返回顶部↑

书页/目录

游戏竞技相关阅读: 制卡师:我的卡牌无限连锁 我能看到商品价格曲线 傲世神荒 重生七零再高嫁 九天星辰诀 七零:炮灰知青只想吃瓜看戏 东海玄龟 从红海行动开始的文娱 我有一双超级透视眼 长夜谍影 娱乐:我实在太想进步了 海贼:我可是王路飞呀 亮剑:我有一间小卖部 诸天影视从小欢喜乔卫东开始 在美漫当心灵导师的日子 影视:从我的体育老师开始 重燃2003 我有一个修仙世界 请勿遵守规则 斗破之从微末到斗帝 影视诸天从流金开始 余岁长安 蝙蝠侠能有什么坏心思 全民转职:驭龙师的我可以斩神! 给,主说这个好使 她是玫瑰最绝色 重生年代大院娇媳美又飒 穿书女频,大婚当日被女主杀死 四合院:从开大车开始 武道人仙 我在盘庚迁殷时发起翦商 我的世界双穿门 乡村美妇 认错人领错证,豪门继承人嘎嘎香 回到红火岁月做俗人 四合院之傻子当家 综武:悟性逆天,开局吊打移花宫 诸天轮回之从仙路开始 我有一枚命运魔骰 快穿之普普通通观察员 择日走红 卧底?三年又三年我成了魔道掌教 百年修仙,我快死了金手指才来 举世震惊,反叛者八号出现! 穿在1977 玄幻反派:仙域最强太子爷! 我的魂兽可以吞天啃地 玄幻:无限吞噬从转生虫族开始 据说秦始皇是个女儿控来着 我在另一个世界的那些年 让你卧底,没让你勾搭大嫂! 阴仙 诸天:和无数个我共享天赋 破案:开局融合警犬嗅觉基因 大清话事人 寡嫂 乡村透视小神农 倒插门 顶不住了!前夫天天把我摁墙上亲 精灵:钓鱼佬的雨天队